13,050 research outputs found

    Thermal evolution history after collision of North China plate with Yangtze plate

    Get PDF
    对采自苏北一胶南一大别高压变质构造混杂岩带的片麻岩、糜棱岩和郑庐断裂带上的片麻岩中9个钾长石进行了40Ar-39Ar 年龄测定和多重扩散域(MDD)模式处理, 9个样品的热演化史表明上述地区存在5个不同的快速冷却时段, 并就其可能的构造含义, 提出了华北与扬子板块碰撞后的折返历史过程。40Ar-39Ar analyses and MDD(multiple diffusion domain)model treatements were performed for 9 K-feldspar samples. They were collected from gneiss and mylonite of North Jiangsu-Jiaonan-Dabie tectonic melange belt and Tancheng-Lujiang fault zone. The thermal evolution history exhibits five fast ccoling stages found in these samples.In relation with their possible tectonic implications a recovery process after the collision of the North China plate with the Yangtze plate is suggested here.published_or_final_versio

    Optically and electrically tunable graphene quantum dot–polyaniline composite films

    Get PDF
    Graphene quantum dot-polyaniline (PANI-GQD) composite films were synthesized by a chemical oxidation polymerization process. The optical properties of the PANI-GQD composite were studied by varying the mole concentration of PANI and the size of the GQDs. The Au/PANI-GQDs/ITO sandwich device was fabricated in order to investigate the transport properties of the composite. A stable hysteresis loop was observed in response to the applied voltage. By varying the PANI content and size of the GQDs, the area within the hysteresis loop and electrical conductance behavior of the device can be tuned in a controlled manner. Both the tunable luminescence and electrical hysteresis behavior are attributed to surface states of the GQDs. The PANI-GQD composite films are expected to find application in photonic devices.Department of Applied Physic

    Numerical modeling of the propagation environment in the atmospheric boundary layer over the Persian Gulf

    Get PDF
    Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land–sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging

    Allelopathy of root exudates from different resistant eggplants to Verticillium dahliae and the identification of allelochemicals

    Get PDF
    Three eggplant cultivars were inoculated with Verticillium dahliae Kleb. to assess their resistance to Verticillium wilt. Solanum tor was resistant, “Liyuanziqie” was tolerant, and “Xi’anlvqie” susceptible. The disease incidence and disease index of Verticillium wilt and the amount of V. dahliae in rhizospheric soil, variation of microbial composition, the allelopathy of root exudates to mycelium growth of V. dahliae and the chemical substances of root exudates from eggplant cultivars with different resistance to Verticillium wilt were investigated in this experiment. The results showed that the root exudates of resistant type could not only affect the growth and development of V. dahliae, but also influence V. dahliae indirectly through regulating soil microbial community composition. This may be one of the reasons for the increase of disease resistance. However, the susceptible type exhibited an opposite trend. It was inferred that the resistant type contained some particular components, such as  acohd, amide, pyranoid, fluorene, while the susceptible one comprised more types of components, that is, ketone, phenol, ester and phenolic acid.Key words: Allelopathy, allelochemical, root exudates, eggplant, Verticillium dahliae, Verticillium wilt, microbial composition

    AtPAP2 modulates the import of the small subunit of Rubisco into chloroplasts

    Get PDF
    published_or_final_versio

    Investigation of Quantum Phase Transitions using Multi-target DMRG Methods

    Full text link
    In this paper we examine how the predictions of conformal invariance can be widely exploited to overcome the difficulties of the density-matrix renormalization group near quantum critical points. The main idea is to match the set of low-lying energy levels of the lattice Hamiltonian, as a function of the system's size, with the spectrum expected for a given conformal field theory in two dimensions. As in previous studies this procedure requires an accurate targeting of various excited states. Here we discuss how this can be achieved within the DMRG algorithm by means of the recently proposed Thick-restart Lanczos method. As a nontrivial benchmark we use an anisotropic spin-1 Hamiltonian with special attention to the transitions from the Haldane phase. Nonetheless, we think that this procedure could be generally valid in the study of quantum critical phenomena.Comment: 14 pages, LaTeX2e (svjour class), 8 EPS figures. Same version as the published one, with new references and English corrections of the proofreade
    corecore